Derived bracket construction and Manin products

نویسنده

  • K. UCHINO
چکیده

We will extend the classical derived bracket construction to any algebra over a binary quadratic operad. We will show that the derived product construction is a functor given by the Manin white product with the operad of permutation algebras. As an application, we will show that the operad of prePoisson algebras is isomorphic to Manin black product of the Poisson operad with the preLie operad. We will show that differential operators and Rota-Baxter operators are, in a sense, Koszul dual to each other.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Homotopy Lie Bialgebras and Lie Quasi-bialgebras

Structures of Lie algebras, Lie coalgebras, Lie bialgebras and Lie quasibialgebras are presented as solutions of Maurer-Cartan equations on corresponding governing differential graded Lie algebras using the big bracket construction of Kosmann-Schwarzbach. This approach provides a definition of an L∞-(quasi)bialgebra (strongly homotopy Lie (quasi)bialgebra). We recover an L∞-algebra structure as...

متن کامل

Derived brackets and sh Leibniz algebras

We will give a generalized framework of derived bracket construction. It will be shown that a deformation differential provides a strong homotopy (sh) Leibniz algebra structure by derived bracket construction. A relationship between the three concepts, homotopy algebra theory, deformation theory and derived bracket construction, will be discussed. We will prove that the derived bracket construc...

متن کامل

Identification of Two Frobenius Manifolds in Mirror Symmetry

We identify two Frobenius manifolds obtained from two different differential Gerstenhaber-Batalin-Vilkovisky (dGBV) algebras on a compact Kähler manifold by Barannikov-Kontsevich-Manin (BKM) construction [1, 13]. One is constructed on the Dolbeault cohomology in Cao-Zhou [5], and the other on the de Rham cohomology in the present paper. This can be considered as a generalization of the identifi...

متن کامل

Homotopy Leibniz algebras and derived brackets ( version 2 )

We will give a generalized framework of derived bracket construction. The derived bracket construction provides a method of constructing homotopies. We will prove that a deformation derivation of dg Leibniz algebra (or called dg Loday algebra) induces a strong homotopy Leibniz algebra by the derived bracket method.

متن کامل

Homotopy Leibniz Algebras and Derived Brackets

We will discuss a bar/coalgebra construction of strong homotopy Leibniz algebras. We will give a generalized framework of derived bracket construction. We will prove that a deformation derivation of differential graded Leibniz algebra induces a strong homotopy Leibniz algebra by derived bracket method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009